
Lecture 18: Signal’s double ratchet (part 2)

Announcements

• Weekly reading: Boneh-Shoup, parts of chapter 9 on authenticated encryption

• HW 7 is due Friday 4/4

• Test 3 is next Monday 4/7 in IEC B10 during discussion lab (9:05-9:55 / 10:10-11)

Recall: end-to-end (e2e) data protection

• Alice and Bob want to have a
private digital conversation

• They would like to use AuthEnc

• Provides privacy + authenticity vs.
Mallory with full network control

• Provides partial sender deniability
even if Mallory coerces Bob

• Remaining issues

• Need to change keys frequently

• Need forward + backward secrecy

• Need deniability

Recall: Forward and backward secrecy

timecompromise recovery

pwnedsafe? safe?

Forward (pre-compromise) secrecy
past messages remain private even
if secret state is exposed later

Backward (post-recovery) secrecy
future messages remain private
even if secret state is compromised
and then the device recovers

18.1 Key Evolution

Symmetric key evolution

Question: Once Alice and Bob negotiate a shared symmetric key KAB for
authenticated encryption, must they re-execute another (expensive) key
negotiation protocol each time they want to update the key?

Basically, seek Authenticated Encryption with a key update mechanism

• KeyGen: randomly choose key K of length λ, e.g. uniform in {0,1}λ

• AuthEncK (private P, authenticated A, nonce N) → ciphertext C

• AuthDecK (C, A, N) → P or “error”

• KeyUpdate (K) → K’ where Alice + Bob agree to use K’ from now onward, and
cannot compute K from K’

Symmetric key evolution via hash functions

Idea: Once we have a single shared key KAB, expand using a chain of hash functions

KAB → H(KAB) → H(H(KAB)) → H(H(H(KAB))) → …

Algorithm:

• Alice + Bob agree on key KAB to use for auth enc

• After some time has passed, they can
evolve their key by updating K ← H(K)

• Here, “time” can denote actual wall-clock time or a message counter

• Alice + Bob must stay in sync, or else the chain breaks & they must redo key agreement

• Crucially, they ensure that old values of K are deleted from their system! Evolution relies on
the fact that Mallory cannot steal something that isn’t around to be stolen

AuthEncK(P1)

AuthEncH(K)(P2)
…

Public key evolution
2 rounds of Diffie-Hellman create a shared secret, and 1 round can update it!

A2 = ga2Choose a2 ← [q]

Shared secret ga1 · b2

Choose b2 ← [q]B2 = gb2

Shared secret ga2 · b2

B1 = gb1 Choose b1 ← [q]

Shared secret ga1 · b1

Choose a1 ← [q] A1 = ga1

18.2 Signal’s Double Ratchet

Double ratchet rules

Alice and Bob maintain two sets of keys: one for Alice-to-Bob messages,
and another for Bob-to-Alice messages

1. When a message is sent or received, a symmetric ratchet KDF step is
applied to the sending or receiving chain to derive a new message key

2. When alternating the direction of communication, a public ratchet
step updates the chain keys that are used in the symmetric ratchet

Signal messaging protocol (simplified)

KDF

Message key1

KDF

Message key2

Message key3

KDF

1. Key evolution
• Each key encrypts 1 msg, then evolved + deleted

• Keys are forward secure but not backward secure

Signal messaging protocol (simplified)

1. Key evolution
• Each key encrypts 1 msg, then evolved + deleted

• Keys are forward secure but not backward secure

2. Key derivation
• Message keys now forward + backward secure

• “Message keys aren't used to derive other keys…
useful for handling lost/out-of-order messages”

KDF Message key1

KDF Message key2

Message key3KDF

Chain key1

Chain key2

Chain key3

Signal messaging protocol (simplified)

1. Key evolution
• Each key encrypts 1 msg, then evolved + deleted

• Keys are forward secure but not backward secure

2. Key derivation
• Message keys now forward + backward secure

• “Message keys aren't used to derive other keys…
useful for handling lost/out-of-order messages”

3. Key ratcheting
• Periodically build new D-H shared secrets

• If adv doesn’t know shared secret, then recover
from losing chain key (backward secrecy)

KDF Message key1,1

KDF Message key1,2

Message key2,1KDF

Chain key1

Chain key2

Chain key3

Shared secret1

Shared secret2

Public ratchet seeds symmetric ratchets (one per direction)

Source: https://whispersystems.org/docs/specifications/doubleratchet/

Public ratchet seeds symmetric ratchets (one per direction)

Source: https://whispersystems.org/docs/specifications/doubleratchet/

Public ratchet seeds symmetric ratchets (one per direction)

Source: https://whispersystems.org/docs/specifications/doubleratchet/

Public ratchet seeds symmetric ratchets (one per direction)

Source: https://whispersystems.org/docs/specifications/doubleratchet/

18.3 Adding Root Keys

Add a third chain to improve post-compromise secrecy

Source: https://whispersystems.org/docs/specifications/doubleratchet/

Alice’s full state

Alice has been initialized with
1. Bob's ratchet public key
2. A shared secret which is the initial root key

From this info, Alice derives
1. A new root key, whose “constant” depends on the public ratchet
2. The first sending key chain

Alice sends her first message by
1. Ratcheting the sending key
2. Using the resulting single use message key to protect her new message

Engineering question:
Note that Bob must send before Alice can send Bob a message.
So, how can Alice send messages if Bob isn’t online?

Alice’s full state

Suppose Bob sends
a message next
1. Alice now has the

other half of the
key pair necessary
to start a receiving
chain

2. Bob’s message
includes a new ,
so Alice can
perform a public
ratchet to make a
new sending chain

Alice’s full state

18.4 Analyzing the Signal Protocol

Putting everything together

Evolve
public key

Evolve
symm key

Ephemeral
secret

AuthEnc is
deniable

Deniable Fwd/back secure

Output Ba Output Ab

AuthEncK(P1)

AuthEncK(P2)
…

K = KDF(Ba) K = KDF(Ab)

Choose a ← [q]
Compute A = ga

Choose b ← [q]
Compute B = gb

A
B

Why Signal provides forward and backward secrecy

timecompromise recovery

pwnedsafe? safe?

Forward (pre-compromise) secrecy
“The parties derive new keys for
every Double Ratchet message so
that earlier keys cannot be
calculated from later ones.”

Backward (post-recovery) secrecy
“The parties also send Diffie-
Hellman public values attached to
their messages. The results of
Diffie-Hellman calculations are
mixed into the derived keys so that
later keys cannot be calculated
from earlier ones.”

Quotes from https://signal.org/docs/specifications/doubleratchet/

Ephemeral utopia

No long-term keys ⇒ great forward secrecy

• Message key used to AuthEnc a message is used once and tossed

• Chain key used to construct msg key is refreshed in each public ratchet

• Diffie-Hellman key pairs chosen ephemerally in each public ratchet

Wait… actually, is this a utopia or a dystopia?

• If you don’t have any long-term state, then who are you?!

• Resolution: Also have a long-term key, Signal maintains a PKI

Source: https://whispersystems.org/blog/safety-number-updates/

Solution: a more involved Triple-DH protocol

Source: https://www.securemessagingapps.com

Source: https://www.eff.org/deeplinks/2018/03/
thinking-about-what-you-need-secure-messenger

Roadmap of course so far

Random(ish)
permutations

Block
ciphers

Hash
functions

Modular
arithmetic

Protected
communication

Authenticated
key agreement

Key
evolution

Signal
messaging

Utilitarian
tools

Elegant
protocols

Next week:
protecting data in use

