Lecture 18: Signal’s double ratchet (part 2)

Announcements

 Weekly reading: Boneh-Shoup, parts of chapter 9 on authenticated encryption
« HW 7 is due Friday 4/4

e Test 3 is next Monday 4/7 in IEC B10 during discussion lab (9:05-9:55 / 10:10-11)

Recall: end-to-end (e2e) data protection

e Alice and Bob want to have a
private digital conversation

e They would like to use AuthEnc

* Provides privacy + authenticity vs.
Mallory with full network control

* Provides partial sender deniability
even If Mallory coerces Bob

e Remaining issues
 Need to change keys frequently

 Need forward + backward secrecy

* Need deniability

Recall: Forward and backward secrecy

compromise recovery

safe! < pwned > safe!

time

Forward (pre-compromise) secrecy | |Backward (post-recovery) secrecy
past messages remain private even | |future messages remain private

If secret state Is exposed later even If secret state Is compromised
and then the device recovers

18.1 Key Evolution

Symmetric key evolution

Question: Once Alice and Bob negotiate a shared symmetric key K,z for

authenticated encryption, must they re-execute another (expensive) key
negotiation protocol each time they want to update the key?

Basically, seek Authenticated Encryption with a key update mechanism
» KeyGen: randomly choose key K of length A, e.g. uniform in {01}A
e AuthEncy(private P, authenticated A, nonce N) - ciphertext C

« AuthDecy(C, A, N) > P or “error”

« KeyUpdate (K) - K’ where Alice + Bob agree to use K’ from now onward, and
cannot compute K from K’

Symmetric key evolution via hash functions

ldea: Once we have a single shared key K,z expand using a chain of hash functions

Kig > H(Kyg) > H(H(Kqg)) > H(H(H(Ka5))) > ...

Algorithm:

» Alice + Bob agree on key K,z to use for auth enc

o After some time has passed, they can
evolve their key by updating K < H(K)

¥/ -
& ARG
» [ty
J
, < -
u th E n C ‘.::. '..... 4 -::
A F 7 o
' e
- aeanr”
cooe \)
| A JFF

e Here, “time” can denote actual wall-clock time or a message counter

e Alice + Bob must stay in sync, or else the chain breaks & they must redo key agreement

e Crucially, they ensure that old values of K are deleted from their system! Evolution relies on
the fact that Mallory cannot steal something that isn't around to be stolen

Public key evolution

2 rounds of Diffie-Hellman create a shared secret, and 1 round can update It!

B1 = gbr | Choose b1 « [q]

—

Al = ga1

N — \]
‘.v ‘l ! —>

o
e
Z

N
”
-
—
(

Choose a1 < [q]

A

Choose a2 <« [q] A2 = ga2

Shared secret ga2 - b2

18.2 Signal’s Double Ratchet

Double ratchet rules

Alice and Bob maintain two sets of keys: one for Alice-to-Bob messages,
and another for Bob-to-Alice messages

1.

When a message Is sent or received, a symmetric ratchet KDF step Is
applied to the sending or recelving chain to derive a new message key

When alternating the direction of communication, a public ratchet
step updates the chain keys that are used in the symmetric ratchet

Signal messaging protocol (simplified)

1. Key evolution

 Each key encrypts 1 msg, then evolved + deleted

e Keys are forward secure but not backward secure

CM essage key1>
|
KDF
|

(M essaée keyz>

(M essage key3>

!
KDF
!

Signal messaging protocol (simplified)

, Chain key;
1. Key evolution |

v

KDF —»CM essage keyD

vV

2. Key derivation Chain key;
I

\4

KDF —><Message key2>

v

Chain keys;
I

v

 Each key encrypts 1 msg, then evolved + deleted

e Keys are forward secure but not backward secure

 Message keys now forward + backward secure

* “Message keys aren't used to derive other keys...
useful for handling lost/out-of-order messages”

KDF —><M essage key3>

v

Signal messaging protocol (simplified)

, Chain key;
1. Key evolution |

v

 Each key encrypts 1 msg, then evolved + deleted
y yP 5 (Shared secretD—» KDF —><Message I<ey1,1>

e Keys are forward secure but not backward secure
|

vV

2. Key derivation Chain key;
I

\4

KDF —><M essage key1,z>

v

3. Key ratcheting Chain keys

|

* Periodically build new D-H shared secrets

o |f adv doesn’t know shared secret, then recover (Shared 59Cfet2>" KDF —><Message |<ey2,1>
!

 Message keys now forward + backward secure

* “Message keys aren't used to derive other keys...
useful for handling lost/out-of-order messages”

from losing chain key (backward secrecy)

Public ratchet seeds symmetric ratchets (one per direction)

Alice Bob

Private key -

Source: https:/ /whispersystems.org/docs/specifications/doubleratchet/

Public ratchet seeds symmetric ratchets (one per direction)

Alice Bob

- Private key
.

t

Source: https:/ /whispersystems.org/docs/specifications/doubleratchet/

Public ratchet seeds symmetric ratchets (one per direction)

Alice Bob

k- -—.
p,.m ey Publickey -

?
- Private key

Source: https:/ /whispersystems.org/docs/specifications/doubleratchet/

Public ratchet seeds symmetric ratchets (one per direction)

Alice Bob

.—>- -<—.

f
Private key - ----------------------

; -
.ﬁ- -
- Public key anate key

t

Source: https:/ /whispersystems.org/docs/specifications/doubleratchet/

18.3 Adding Root Keys

Add a third chain to improve post-compromise secrecy

Source: https:/ /whispersystems.org/docs/specifications/doubleratchet/

Alice’s full state

Ratchet Root Sending Receiving

’4-- . @— Old keys can be deleted

>

Alice has been initialized with

1. Bob's ratchet public key
2. A shared secret which is the initial root key

From this info, Alice derives

1. A new root key, whose “constant” depends on the public ratchet
2. The first sending key chain

Alice’s full state

Ratchet Root Sending Receiving

& ---- @7 Old keys can be deleted

»
o @ .
Symmetric-key
.‘ ratchet

Alice sends her first message by
1. Ratcheting the sending key
2. Using the resulting single use message key to protect her new message

Engineering question:

Note that Bob must send @8 before Alice can send Bob a message.
So, how can Alice send messages If Bob isn’t online?

Alice’s full state

Suppose Bob sends

Ratchet Root Sending Receiving
- - d message next
om- -
® 1. Alice now has the
- other half of the

key pair necessary
to start a receiving
chain

2. Bob’s message

N includes a new G
RK ok - ’
| i so Alice can
DH ratchet Symmetric-key ratchet & @ perform a public

ratchet to make a
new sending chain

18.4 Analyzing the Signal Protocol

Deniable

Ephemeral
secret

AuthEnc Is
deniable

Putting everything together

Choose a « [q]

Choose b < [al Fwd/back secure

Compute A = ga Compute B = gb

K = KDF(B?)
‘ AUthEnCK(P1)
—————————————————

AuthEnc.(P,)

: ‘ —
/

Evolve
public key

Evolve

symm key

compromise

Why Signal provides forward and backward secrecy

recovery e

pwned

> safe!

safe!? <

Forward (pre-compromise) secrecy
“The parties derive new keys for
every Double Ratchet message so
that earlier keys cannot be
calculated from later ones.”

Backward (post-recovery) secrecy

“The parties also send Diffie-
Hellman public values attached to
their messages. The results of
Diffie-Hellman calculations are
mixed into the derived keys so that
later keys cannot be calculated

from earlier ones.”

Quotes from https://signal.org/docs/specifications/doubleratchet/

Ephemeral utopia

No long-term keys = great forward secrecy

 Message key used to AuthEnc a message Is used once and tossed

e Chain key used to construct msg key Is refreshed in each public ratchet

v 4 @750

< Verify safety numbers <

» Diffie-Hellman key pairs chosen ephemerally in each public ratchet

Wait... actually, is this a utopia or a dystopia?

37345 35585 86758 07668

* |fyou don't have any long-term state, then who are you?! e s e

» Resolution: Also have a long-term key, Signal maintains a PKI ot b e i .

can scan th code on th ir phone, or
ask them to scan your code. Learn more

Source: https://whispersystems.org/blog/safety-number-updates/ “

Solution: a more involved Triple-DH protocol

Party-A |> communicating with >

LDH-A | EDH-A | LDH-B

s|[p|ysiP p

Party-B

 EDH-B
o

Shared_Secret = KDF(| suk1 ||

LDH - Long4erm DM keypair,

EDH -~ Ephemeral DM keypair,

S « Secrot key in DM keypair

P - Public koy in DH keypair,

A - Socret keoy is destroyed/forgotien after use.
SH-K - Shared key from DH exchange.

Party-B

EDH-A

27

> communicating with >

Party-A

LDH-B

© © Stan Drapkin

SECURE MESSAGING APPS COMPARISON

EEEEEEEEEEEEEEEEEEEEE

App name Allo iMessage Messenger Signal Skype Telegram Threema Viber Whatsapp Wickr Wire

TL;DR: Does the
app secure my
messages and
attachments?

Source: https:/ /www.securemessagingapps.com

Thinking About What You Need In A Secure
Messenger

BY GENNIE GEBHART | MARCH 28, 2018

Source: https:/ /www.eff.org/deeplinks/2018/03/
thinking-about-what-you-need-secure-messenger

Roadmap of course so far

Signal
messaging

Key
evolution

Protected Authenticated
Elegant communication key agreement
protocols -
Utilitarian | N L/

Block - Hash | - Modular
tools functions | arithmetic |

ciphers

Random(ish)
permutations

Next week:
protecting data in use

