
Lecture 17: Signal’s double ratchet

Announcements

• Weekly reading: Boneh-Shoup, parts of chapter 9 on authenticated encryption

• HW 7 is due Friday 4/4

• Test 3 is next Monday 4/7 in IEC B10 during discussion lab (9:05-9:55 / 10:10-11)

Review: client-server encryption

• Alice wants to talk with a server
Bob over the Internet

• They do not yet possess a
shared secret key

• Our adversary Mallory can read,
tamper, add, drop data in transit

• Mallory is a stand-in for anyone
that owns Internet infrastructure

Review: end-to-end encryption

• Now Alice is communicating with
Bob’s personal laptop/phone

• They have never met before in
person to exchange a key

• Protecting both scenarios
involves similar crypto

Objectives

• Protection from network

• Message confidentiality

• Sender authenticity + message binding

• Protection from endpoints

• Secrecy before/after compromise

• Sender deniability

• Non-goals

• Hiding metadata (e.g., Alice and Bob’s
identity, message size)

• Stopping replay, delay, re-ordering

Objectives

• Protection from network

• Message confidentiality

• Sender authenticity + message binding

• Protection from endpoints

• Secrecy before/after compromise

• Sender deniability

• Non-goals

• Hiding metadata (e.g., Alice and Bob’s
identity, message size)

• Stopping replay, delay, re-ordering

AuthEnc will protect communication
on the network, if Alice and Bob
already have a shared key K

This is new to us…

17.1 Forward + backward
secrecy and deniability

Overview of Signal

• Key exchange with good deniability

• Alice and Bob want to generate a shared
key without ever having met before

• Assistance from a partially-trusted entity
that mediates this connection

• Key evolution (aka ratcheting) with
forward/backward secrecy

• Use each key to protect just 1 message,
then delete it!

• Protect message privacy + integrity
against device compromise in past +
future

• Generate a new key for the next message

Forward and backward secrecy

timecompromise recovery

pwnedsafe? safe?

Forward (pre-compromise) secrecy
past messages remain private even
if secret state is exposed later

Backward (post-recovery) secrecy
future messages remain private
even if secret state is compromised
and then the device recovers

Non-deniable crypto (xkcd.com/538)

Deniable crypto = can pretend you said something else

C = EncK(P)

what does C decrypt to
?

hmm… PB’

what does C decrypt to?hmm… PA’

One time pad → perfect deniability

C = P ⊕ K

PB’ w
ith key KB = C ⊕ PB’

what does C decrypt to
?what does C decrypt to?

PA’ with key KA = C ⊕ PA’
Bad news
Can prove that
perfect deniability
requires |K| ≥ |P|

Auth encryption → partial sender deniability

give me your phone

P, K, C

did you write P?no, Bob wrote it!

C = AuthEncK(P)

Deniability in practice

[T]he DKIM authenticity stamp has been widely used by
the press, primarily in the context of political email
hacks. It’s real, it’s important, and it’s meaningful.

The most famous example is also one of the most
divisive: back in 2016, Wikileaks published a batch of
stolen emails stolen from John Podesta’s Google
account. Since the sourcing of these emails was murky,
WikiLeaks faced a high burden in proving to readers that
these messages were actually authentic. DKIM provided
an elegant solution: every email presented on Wikileaks’
pages publicly states the verification status of the
attached DKIM signatures, something you can see today.

But the Podesta emails weren’t the end of the DKIM
story. In 2017, ProPublica used DKIM to verify the
authenticity of emails allegedly sent to a critic by
President Trump’s personal lawyer Mark Kasowitz. In
2018, the Associated Press used it once again to verify
leaked emails tying a Russian lawyer to Donald Trump Jr.

Source: https://blog.cryptographyengineering.com/2020/11/16/ok-google-please-publish-your-dkim-secret-keys/

17.2 Authenticated Key Exchange

Generating the first shared secret

• Alice and Bob have

• Never met in person, or else they
could exchange a key face-to-face

• Lack any shared secrets, or else
they could run PBKDF2 on them

• They do have individual secrets!

• Question: can Alice and Bob
generate a symmetric key K and
keep it secret from Eve/Mallory?

output:
key K

output:
key K

Diffie-Hellman key agreement (against a passive Eve)

Protocol Analysis

• Correctness: shared secret since
Ab = (ga)b = gab = (gb)a = Ba

• Secrecy: to learn K, a passive Eve
given g, ga, gb must find gab

• There exist mathematical spaces in
which this problem is hard!

• Forward secrecy: Choices of a, b
are ephemeral; delete afterward
so even you cannot compute K

Choose a randomly
Compute A = ga

Choose b randomly
Compute B = gb

A
B

Output K = Ba Output K = Ab

AuthEncK(P)
Delete a, K Delete b, K

D-H + signatures = Authenticated key exchange

1. Alice and Bob sign their messages during Diffie-Hellman key exchange

2. Alice and Bob verify signature of each other’s messages

3. Use shared key Ab = Ba for (deniable) symmetric authenticated encryption

Choose a randomly
Compute A = ga

Choose b randomly
Compute B = gb

A, signskA(A)

B, signskB(B)

Question: how do Alice and Bob
learn each other’s public keys?

17.3 Digital Certificates & the
Public Key Infrastructure (PKI)

Recap: Digital signatures provide public authentication

secret
key SK

check
VerifyPK (A, σ)

public
key PKauth msg A,

σ = SignSK(A)

Property MAC Sign

Sender auth: Bob knows Alice sent A ✓ ✓

Msg auth: Bob can detect tampering ✓ ✓

Receiver auth: Bob knows A for him ✓ ✗

Partial deniability: Alice can deny A ✓ ✗

cannot
forge (A*, σ*)

Public key infrastructure

• A certificate authority stores all
public keys (like a phone book)

• Server does not learn private keys

• Anyone can query the authority
to learn someone else’s key

• CA signs response certificates so
they can be verified as legit

• Alice knows the CA’s public key
because it is included in her OS

Name Unique key
Alice

Bob

Alice

Bob

“I want Bob’s
public key”

BobSignskCA()

Alice Bob

PKI improved

• Alice talks with Bob, not CA

• Bob includes a certificate that
the signing key belongs to him

• This figure shows a simplified
version of the Transport Layer
Security (TLS) handshake

“Hi, who are you?” + nonce

BobSignskCA()

SignskB(nonce)

Name Unique key
Alice

Bob

Alice

Bob

Google.com in Firefox:

BU login page in Firefox (2017):

What if Bob’s secret signing key is compromised?

timecompromise recovery

pwnedsafe? safe?

Forward (pre-compromise) secrecy
Yes! Unless Mallory has a time
machine, signatures Alice verified
before a breach must be valid.

Backward (post-recovery) secrecy
No. If Mallory has Bob’s secret key,
she can sign messages and Alice
will believe they are from Bob.

Backward security technique #1: Cert expiration

• Certificate states that Alice
should only trusts Bob’s key for
a limited time

• Afterward, Bob must register a
new public key with the CA

• (Cert expiration also helps to
deal with Moore’s law: keys
become bigger over time)

“Hi, who are you?” + nonce

Name Unique key
Alice

Bob

Alice

Bob

SignskB(nonce)

BobSignskCA(,

valid from 1/1/25
until 12/31/25)

Backward security technique #2: Cert revocation

• CA binds public key to a name

• If you lose control of your public
key, you should tell the CA to
break this binding

• Every CA maintains a certificate
revocation list that anyone can
query

“Has Bob’s key
been revoked?

Bob

“No, it is
still valid”

Name Unique key
Alice

Bob

Alice

Bob

Backward security technique #2: Cert revocation

• CA binds public key to a name

• If you lose control of your public
key, you should tell the CA to
break this binding

• Every CA maintains a certificate
revocation list that anyone can
query

Name Unique key
Alice Alice

SignskB(“Lost key”)

“Has Bob’s key
been revoked?

“Yes, do
not use it”

